

Цифровой мультидатчик погоды / анемометр

Артикул PS-2174

Входящее в комплект поставки оборудование Номер артикула

Дополнительное необходимое оборудование	
Удлинительный кабель PASPORT	PS-2500
Цифровой мультидатчик погоды / анемометр	PS-2174

Интерфейс PASPORT	См. страницу 4
Запасные компоненты	
Запасная крыльчатка	PS-9879

Быстрый пуск

- 1. Подключите цифровой мультидатчик погоды/анемометр к вашему интерфейсу PASPORT.
- **2.** Если вы используете компьютер, подключите к нему интерфейс PASPORT и запустите программу DataStudio.
- **3.** Защитите мультидатчик от воздействия прямых солнечных лучей
- **4.** Удерживайте мультидатчик так, чтобы поток воздуха поступал на крыльчатку с её обратной стороны.
- 5. Чтобы начать запись данных, нажмите (или кликните) кнопку пуска.

Вводная часть

Цифровой мультидатчик погоды / анемометр измеряет:

- скорость ветра
- температуру воздуха
- относительную влажность
- барометрическое давление

На основании измерений этих параметров датчик рассчитывает:

- скорость порывов ветра
- точку росы
- индекс температуры и влажности (Humidex безразмерная величина, основанная на точке росы)
- температуру с учётом ветра (охлаждение под действием ветра)
- абсолютную влажность

Мультидатчик подключается к интерфейсу PASPORT. Если интерфейс имеет функции регистратора данных (например, Xplorer или Xplorer GLX) в автономном режиме, данные записываются и отображаются на самом интерфейсе. Если интерфейс PASPORT подключен к компьютеру, данные записываются и отображаются на компьютере в программе DataStudio.

Настройка

Подключение датчика к интерфейсу

Подключите мультидатчик к любому порту интерфейса PASPORT, либо напрямую, либо с помощью удлинительного кабеля PASPORT, артикул PS-2500.

Расположение датчика

- Опция: в монтажное отверстие на обратной стороне мультидатчика вкрутите стержень с резьбой ¼-20 (например, CI-9874). Стержень вставьте в треногу. Соберите оборудование, как показано на Иллюстрации 1.
- Мультидатчик установите в вертикальное положение так, чтобы поток воздуха был направлен на обратную сторону крыльчатки (Иллюстрация 1).
- Защитите мультидатчик от воздействия прямых солнечных лучей.

Иллюстрация 1: варианты монтажа и направление потока воздуха

Интерфейс и конфигурация программного обеспечения (опция)

Интерфейс или программное обеспечение подготавливаются к записи данных после подключения мультидатчика автоматически. Для изменения настроек по умолчанию выполните следующие действия:

Конфигурация GLX (автономный режим)

Добавление измеряемых параметров на цифровой экран

Для добавления измеряемых параметров на цифровом экране нажмите G, H или I.

Изменение отображаемого измерения

На любом экране дважды нажмите "с", после чего откроется меню источника данных. В этом меню вы можете выбрать, какое измерение должно отображаться.

Изменение единиц измерения

- 1. На любом экране нажмите "с", после чего высветятся активные области.
- С помощью клавиш со стрелками выделите единицу измерения.
- Нажмите "с", чтобы открыть меню единиц измерения. В меню вы сможете выбрать различные ЕИ.

Изменение скорости выборки

- 1. Откройте экран датчиков, нажав "h +I".
- 2. Нажмите "с" откроется меню ЕИ скорости выборки. Для скоростей выше 1 выборки в секунду выберите *samples/s* (выборка/секунда). Для меньших скоростей выберите *seconds, minutes or hours* (секунды, минуты или часы).

- 3. Нажмите "d", чтобы выделить Sample Rate (скорость выборки).
- Для изменения интервала между выборками нажимайте "+" или "-".

Конфигурация DataStudio

Создание нового дисплея данных

- 1. Дважды кликните «иконку» графического, цифрового или другого дисплея в горизонтальном меню Summary (Обзор). Появится перечень источников данных.
- **2.** Выберите измерение, которое вы желаете отобразить, кликните **ОК**.

Изменение ЕИ

- **1.** Кликните **Set Up** (Настройки), чтобы открыть окно Experiment Setup (Настройки эксперимента).
- 2. Под первой или второй вкладкой Measurements (Измерения) кликните ту единицу измерения, которую вы желаете изменить. Откроется меню.
- 3. Кликните нужную единицу измерения.

Изменение скорости выборки

- 1. Кликните Set Up (Настройки), чтобы открыть окно Experiment Setup (Настройки эксперимента).
- 2. Кликните единицы рядом с настройками скорости выборки. Откроется меню. Для скоростей выше одной выборки в секунду выберите *Hz* (Гц). Для меньших скоростей выберите *seconds, minutes or hours* (секунды, минуты или часы).
- **3.** С помощью клавиш со стрелками измените интервал между выборками.

Сбор данных

GLX (автономный режим)

Отображение данных без записи

Откройте цифровой или метрический дисплей. GLX будет отображать «живые» данные.

Запись данных

- 1. Нажмите "s". GLX начнёт запись данных.
- 2. Нажмите "s" повторно, чтоб остановить запись данных.
- **3.** Нажмите "s" ещё раз, чтобы начать запись нового отрезка данных.

DataStudio

Отображение данных без записи

1. Откройте меню «Эксперимент», выберите **Monitor** (мониторинг). DataStudio будет отображать «живые» данные.

2. Чтобы остановить мониторинг данных, кликните **Stop** (Стоп).

Запись данных

- 1. Кликните Start (Пуск). DataStudio начнёт запись данных.
- 2. Чтобы остановить запись, кликните Stop (Стоп).
- 3. Кликните Start ещё раз, чтобы начать запись нового отрезка данных.

Рекомендации к проведению измерений

Время установления равновесия: после быстрого (резкого) изменения температуры или влажности датчику может понадобиться несколько секунд, чтобы «прийти в равновесие» с окружающей средой. Проследите за показаниями – для их стабилизации потребуется какое-то время.

Выставление положения датчика в зависимости от направления ветра: удерживайте или установите мультидатчик так, чтобы ветер дул на его крыльчатку с её обратной стороны.

Тень: для обеспечения точности измерений (в особой степени это касается температуры и влажности) исключите нахождение датчика под прямыми солнечными лучами.

Влажность: исключите контакт датчика с водой. Для обеспечения точности измерений мультидатчик должен оставаться свободным от влаги и конденсата.

Измерения

Первичные измерения

Первичные измерения производятся датчиком скорости ветра, датчиками температуры, давления и влажности.

Скорость ветра: датчик определяет Скорость Ветра по скорости вращения крыльчатки (при условии, что поток воздуха направлен на крыльчатку с обратной стороны). Для получения точных измерений скорость ветра должна быть не меньше 0,5 м/с. Скорость ветра измеряется в следующих ЕИ: м/с, км/ч, миль/час, узлы или футы в секунду.

Температура воздуха: измеряется датчиком температуры на базе термистора. Для точных измерений прибор должен находиться в тени. Температура измеряется на шкале Цельсия или Фаренгейта.

Относительная влажность: измеряется датчиком влажности. Результаты измерений будут точными, если прибор находится в тени и при температуре окружающего воздуха. Значение относительной влажности выводится как соотношение между парциальным давлением водяного пара и давлением насыщенных паров, выраженное в процентах.

Барометрическое давление: измеряется датчиком давления, который расположен внутри устройства. Датчик показывает фактическое атмосферное давление, а не давление, скорректированное с учётом уровня моря. Барометрическое давление измеряется в следующих единицах измерения: мбар, гектопаскаль, дюймы ртутного столба.

Каждое вторичное измерение есть ни что иное, как расчёт, выполненный на основании одного или нескольких первичных измерений.

Скорость порыва ветра: порывом ветра называется его максимальная скорость, обнаруженная с момента начала выборки. Например, если время выборки составляет 1 минуту, каждое значение порыва ветра будет максимальной скоростью, которая наступила за предыдущую минуту. По умолчанию скорость выборки составляет 5 выборок в секунду. Скорость порыва ветра не сильно отличается от скорости ветра, однако при больших интервалах между выборками разница все же может быть довольно существенной. Скорость порыва ветра измеряется в следующих ЕИ: м/с, км/ч, миль/час, узлы или футы в секунду.

Чтобы измерения были точными и надёжными, на датчик между выборками должно бесперебойно поступать питание. Если на вашем интерфейсе предусмотрен режим «сна» между выборками, то значения порыва ветра определяться не будут.

На Иллюстрации 2 представлен график скорости ветра (скорость ветра регистрировалась со скоростью выборки 5 образцов в секунду). Кружочки обозначают, какими были бы измеряемые данные (то есть, результаты измерений) при скорости 1 выборка за 10 секунд. Треугольниками показаны данные по скорости порывов ветра при такой же скорости выборки.

Точка росы: это температура, до которой при постоянном давлении должен охладиться воздух, чтобы началась конденсация водяного пара. Точка росы измеряется в градусах Цельсия или Фаренгейта. Датчик рассчитывает точку росы по следующей формуле:

Точка росы =
$$\frac{-430.22 + 237.7 \times \ln\left(\frac{\text{SatVP} \times \text{RH}}{100}\right)}{-\ln\left(\frac{\text{SatVP} \times \text{RH}}{100}\right) + 19.08}$$

где SatVP = $6.11 \times 10^{7.75 \times T/(237.7 + T)}$ = давление насыщенного водяного пара, RH = относительная влажность в процентах, а *T* – температура в градусах Цельсия.

Абсолютная влажность: это масса водяного пара в заданном объёме. Выражается в г/м³. Датчик рассчитывает абсолютную влажность по следующей формуле:

Абсолютная влажность = $\frac{13.24 \times \text{RH}}{T + 273.15} \times \exp\left(\frac{17.42T}{T + 239.7}\right)$

где

РН = это относительная влажность в %, Т – температура в градусах Цельсия.

Охлаждение под действием ветра: суммарное воздействие температуры и скорости ветра. Выражается как кажущаяся температура в градусах Цельсия или Фаренгейта. Охлаждение под действием ветра датчик рассчитывает по следующей формуле:

> Охлаждение под действием ветра (°F) = = $35.74 + 0.6215T - 35.75V^{0.16} + 0.4275T^{0.16}$

Т – это температура воздуха (выражена в °F), а V является скоростью ветра (в милях в час). Охлаждение под действием ветра определяется при температурах до 50°F (включительно) и скорости ветра более 3 миль в час. За пределами этих «границ» датчик выдаёт значение, равное температуре воздуха.

Нитіdex - безразмерная величина, основанная на точке росы (индекс температуры и влажности): суммарное воздействие температуры и влажности. Выражается как кажущаяся температура в градусах Цельсия или Фаренгейта. Датчик рассчитывает Humidex по следующей формуле:

Humidex =
$$T + \frac{5}{9}(e - 10)$$
,

где *T* – температура в градусах Цельсия, а "е" – давление водяного пара в мбар.

Давление с учётом уровня моря

Стандартная метеорологическая станция сообщает не фактическое измеренное барометрическое давление, а давление, скорректированное с учётом уровня моря. Это давление рассчитывается по следующей формуле:

[Барометрическое давление (мбар)] + 1013*(1-exp(-*h*/7000)),

где h – это высота, на которой находится датчик, измеряемая в метрах. Чтобы эти расчёты производились автоматически, введите данную формулу в калькулятор DataStudio или GLX.

Спецификации

Измеряемый параметр	Диапазон	Разрешение	Точность (% от показаний шкалы)
Скорость ветра	0,5 – 29 м/с	0,1 м/с	±(3% от показаний шкалы + 0,2 м/с)
Температура	-20 – 55°C	0,1°C	±0,5°C
Относительная влажность	0 – 100%	1%	±2%
Барометрическое давление	150 – 1150 гекто- паскаль	0,03 гекто- паскаль	1 гектопаскаль

Совместимые интерфейсы

Цифровой мультидатчик погоды / анемометр совместим со всеми проводными интерфейсами PASPORT, а также регистраторами данных, включая USB Link (PS-2100), Xplorer (PS-2000), PowerLink (PS-2001) и Xplorer GLX (PS-2002).

Цифровой мультидатчик погоды / анемометр совместим с беспроводным интерфейсом AirLink SI, артикул PS-2005A. С артикулом PS-2005 он не совместим.

Техническая поддержка

Контактные данные Службы технической поддержки PASCO:

Адрес:	PASCO scientific, 10101
	Бульвар Футхиллз,
	Розвилл, Калифорния 95747-7100
Телефон:	916-786-380 (для звонков
	из любой страны мира, кроме США) или
	800-772-8700 (для звонков из США)
Факс:	(916) 786-7565
Сайт:	www.pasco.com
Электронная почта:	support@pasco.com

Ограниченная гарантия

Описание условий гарантии на продукцию PASCO приводится в каталоге PASCO.

Авторское право

Руководство для пользователя PASCO scientific 012-09911D Weather/Anemometer Sensor Instruction Sheet (Цифровой мультидатчик погоды / анемометр) защищено авторским правом. Копирование любой части настоящего руководства разрешается некоммерческим образовательным учреждениям при условии использования исключительно в лабораториях и аудиториях и неосуществлении продаж с целью получения прибыли. При других обстоятельствах копирование без письменного разрешения со стороны PASCO scientific запрещается.

Торговые марки

PASCO, PASCO scientific, DataStudio, ScienceWorkshop, Xplorer и Xplorer GLX являются торговыми марками или зарегистрированными торговыми марками PASCO scientific в США и/или других странах. Наименования других брендов, продуктов и сервисов являются или могут быть торговыми или сервисными марками, используемыми для идентификации продукции и услуг других владельцев. Для получения более подробной информации заходите по ссылке www.pasco.com/legal

PS-2174