

Руководство по эксплуатации 012-09919A

Цифровой датчик положения GPS

Артикул PS-2175

800-772-8700 www.pasco.com

Содержание

Вводная часть	3
Принцип работы	4
Настройка датчика	4
Режимы	5
Данные датчика	6
Сбор данных	6
Стандартные действия с GLX	7
Передача данных в DataStudio	8
Отображение данных в My World GIS (пример)	9
Применение датчика положения с другими интерфейсами	10
Спецификация	11
Техническая поддержка	11

Цифровой датчик положения GPS

Артикул PS-2175

Входящее в комплект поставки оборудование	Номер артикула
Цифровой датчик положения GPS	PS-2175
Удлинительный кабель PASPORT	PS-2500
Необходимое оборудование	Номер артикула
Xplorer GLX или другой интерфейс PASCO1	См. каталог PASCO или www.pasco.com
Рекомендуемое оборудование	
Флэш-накопитель USB2	PS-2551 или аналогичный
Программное обеспечение My World GIS	См. каталог PASCO или www.pasco.com/myworld

¹ Перечень интерфейсов PASCO включает в себя: Xplorer GLX (PS-2002), Xplorer (PS-2000), AirLink (PS-2005), PowerLink (PS-2001) и USB Link (PS-2100)

² Для передачи данных от Xplorer GLX в программу My World GIS

Вводная часть

Цифровой датчик положения GPS PASCO, получая сигналы от Глобальной системы определения местоположения, определяет широту, долготу, высоту и горизонтальную скорость в любой точке планеты. Его можно использовать автономно или в комбинации с другими датчиками для проведения научных экспериментов по физике и другим предметам вне помещений.

Данные с цифрового датчика положения GPS перенаправляются на интерфейс PASPORT, например, Xplorer GLX. Просматривать и анализировать данные можно на GLX или перенаправлять их на компьютер, на котором установлена и работает программа DataStudio или My World GIS.

Цифровой датчик положения GPS совместим со всеми интерфейсами PASCO, но проще всего эксплуатировать его с Xplorer GLX. Инструкции в данном руководстве даны на основе предположения, что вы используете именно Xplorer GLX. Дополнительная информация по использованию других интерфейсов приводится на странице 10.

Принцип работы

Принцип работы

GPS расшифровывается как «Глобальная система определения местоположения». Управление системой осуществляет правительство США, а пользуются ей люди во всём мире. Система включает в себя более 24 спутников, движущихся по орбите на высоте примерно 20 000 км. Спутники транслируют сигналы измерения дальности и необходимые данные на датчик положения для определения его скорости и местонахождения. Датчик положения только принимает данные со спутников. Сигналы он не передаёт.

Для определения местоположения датчик должен принимать данные минимум с трёх спутников. После включения датчик начинает «искать» доступные спутники. Процесс обычно длится от 30 секунд до 2 минут. После идентификации спутников датчик активно их отслеживает и обнаруживает вновь появляющиеся спутники.

Лучше всего цифровой датчик положения работает вне помещений и в ясную погоду.

Настройка датчика

Ориентирование и позиционирование

Чтобы датчик получал сигналы со спутников, важно правильно его сориентировать, то есть выставить его положение, что особенно важно для режима *начального поиска* (в этом режиме мигает красный индикатор SEARCH – ПОИСК). Антенна ловит сигналы через ту поверхность датчика, на которую наклеена этикетка. Держите датчик горизонтально, стороной с этикеткой вверх, к небу. Не закрывайте область антенны (эта область имеет соответствующую маркировку).

Если вы подключаете датчик к Xplorer GLX напрямую (без использования кабеля), используйте каналы 1 и 2 (не используйте каналы 3 и 4). GLX держите горизонтально.

Для крепления устройства на ручке предусмотрена резьбовая часть ¼-20, как показано на иллюстрации.

Настройка интерфейса

Лучше всего цифровой датчик положения работает с программой GLX, версия 1.40 и более поздние версии. Чтобы «скачать» новейшую версию, зайдите по ссылке www. pasco.com/glx.

Перед тем, как вынести GLX на улицу, подключите его на несколько часов к источнику переменного тока, чтобы полностью зарядить батарею.

- 1. Подключите датчик (напрямую) к каналу 1 или 2 Xplorer GLX. Если используете кабель, подключайте к любому каналу.
- 2. Чтобы включить GLX, нажмите и удерживайте кнопку «питание». GLX автоматически обнаружит датчик и откроет цифровой дисплей, на котором будут выведены результаты измерений широты и долготы.
- 3. Опция: нажмите F4 ศ для отображения всех 8 первичных измерений датчика.

Если вы планируете использовать другие датчики для сбора данных вместе с данными по GPS, подключайте эти датчики к другим портам GLX.

выставление датчика для начального поиска

закрепление на ручке (опция)

Режимы

Готовность или неготовность датчика к выполнению измерений определяется по светодиодным индикаторным лампам. Если горит зелёный индикатор DATA (Данные), датчик готов к измерениям. Датчик не готов, если горит красный индикатор (или красный и зелёный одновременно).

После включения датчик входит в режим *начального поиска*, во время которого он ищет в небе доступные спутники. Режим *начального поиска* обычно длится от 30 до 120 секунд. В этом режиме мигает красный индикатор SEARCH (По-иск).

Если датчик активно отслеживает 3 и более спутника, он переключается в режим «Система активна». В данном режиме датчик постоянно обновляет измерения своих координат и скорости. В этом режиме непрерывно горит зелёный индикатор DATA (Данные).

Если датчик не в состоянии отслеживать минимум 3 спутника, он входит в

режим «Система потеряна». В этом режиме датчик продолжает транслировать свои последние измерения координат. Этими «устаревшими» данными следует пользоваться с осторожностью. Данные являются неверными, если датчик переместился с момента последнего измерения в режиме «Система активна». В режиме «Система потеряна» горят оба индикатора.

Таблица 1: Режимы

Режим	Светодиодные индикаторы	Отчётные данные	Число спутников	Примечание
Начальный	Данные: выкл.	Широта: 0.0	0	Местоположение
поиск	Поиск: 🔆 мигает красный	Долгота: 0.0		недоступно
«Система	Данные: "ஜ́́́́́́́, вкл., зелёный	Широта: актуальные измерения	Три или	Актуальное
активна»	Поиск: выкл.	Долгота: актуальные измерения	более	местоположение
«Система потеряна»	Данные:	Широта: последний отчёт в режиме «Система активна» Долгота: последний отчёт в режиме «Система активна»	0	Устаревшие данные (использовать с осторожностью)

Данные датчика

Датчик в непрерывном режиме передаёт результаты измерений нескольких различных параметров. GLX записывает все эти данные, даже если они не отображаются. Измеряемые параметры приводятся в Таблице 2.

Измеряемый параметр ¹	Диапазон	Разрешение	Примечания	Пример ²
Широта	±90.00000°	0.000001° (~2 м)	Глобальное позиционирование для Му	38.803772°
Долгота	±180.000000°	0.000001° (~2 м)	World и других картографических при- ложений	-121.316544°
Высота	0 — 18000 м	1м		34 м
Горизонтальная скорость	0,0 – 515,00 м/с	0,01 м/с		1,07 м/с
Курс относительно грунта	0 – 360°	0,01°	Север: 0° Восток: 90° Юг: 180° Запад: 270° Данные надёжны, если датчик переме- щается	24.74°
Число спутников	20	1	Количество спутников, активно отслежи- ваемых датчиком	5
Относительная широта	±10000 м	~0.2 м	Относительное смещение с той точки, где началась запись данных. Исходная точка	2,3
Относительная долгота	±10000 м	~0.2 м	обновляется каждый раз, когда начинает- ся сбор нового отрезка данных	1,8
Широта в минутах	0 to 60.0000'	0.0001' (~0.2 м)		48.2271'
Долгота в минутах	0 to 60.0000'	0.0001' (~0.2 м)	импуты в пределах актуального градуса	-18.9935'

¹ Данные по точности приводятся в Спецификациях на странице 11.

² Примеры приведены из данных, полученных при 38° 48.2271' северной широты, 121° 18.9935' западной долготы, в направлении «норд-норд-ост».

Сбор данных

Каждый раз после включения цифровой датчик положения PASCO непрерывно принимает (или «пытается» принять) данные с GPS-спутников, даже если данные не записываются GLX. На основании полученных со спутников данных датчик рассчитывает широту, долготу и прочие параметры, которые приводятся в Таблице 2. Данные передаются на GLX.

Если активное отслеживание спутников не ведётся, данные всё равно передаются на GLX. Будьте осторожны – в этих данных уверенными быть нельзя. В режиме начального поиска (при мигающем красном индикаторе), датчик передаёт значения широты и долготы, равные 0. В режиме «Система утрачена» датчик направляет последние актуальные данные (мигают и красный, и зелёный индикаторы).

Для записи данных:

- **1.** На GLX нажмите . По умолчанию максимальная скорость выборки составляет 1 раз в секунду. На цифровом дисплее отображаются данные по широте и долготе (в десятичных градусах).
- 2. Чтобы прекратить запись данных, нажмите 🕟 повторно.

Повторите шаги 1 и 2 для осуществления записи последующих отрезков данных.

Если вы желаете наблюдать актуальное положение без записи данных, описанные выше действия (шаги) выполнять не обязательно. На цифровой дисплей всегда выводятся текущие показания.

Стандартные действия с GLX

Подробные инструкции по применению GLX для сбора, отображения и анализа данных приводятся в руководстве по эксплуатации Xplorer GLX.

Отображение относительного смещения в виде графика

Измерения относительной широты и относительной долготы являются смещениями в координатах «север – юг» и «запад – восток» (в метрах) от вашей исходной точки. Исходная точка обновляется каждый раз, когда вы иницируете процесс записи данных. Для составления графика «Относительная широта – Относительная долгота» выполните следующие действия:

- **1.** Нажмите (1), (т) и откройте графический дисплей. По умолчанию появляется график «Широта / время».
- **2.** Нажмите *Э*. Активные области графика засветятся, будет выделена Широта.
- **3.** Нажмите 🕢 и откройте меню источника данных. С помощью клавиш со стрелками выделите **Относительная широта.** Нажмите 🕢.
- 4. Нажмите 🕢. Активные области графика засветятся снова.
- 5. Нажмите клавишу со стрелкой вниз и выделите время.
- 6. Нажмите 🕢 и откройте меню источника данных. С помощью клавиш со стрелками выделите Относительная долгота. Нажмите 🕢.

Отображение данных в градусах и минутах

Чтобы выразить широту, долготу (в градусах и минутах) и обозначения "N" или "S" (север или юг от экватора) и "W" или "E" (восток или запад от нулевого меридиана) выполните следующие действия.

- 1. На цифровом дисплее нажмите (), чтобы засветились активные области.
- 2. С помощью клавиш со стрелками выделите Широту.
- **3.** Нажмите и откройте меню источника данных. С помощью клавиш со стрелками выделите **Data Properties** (Свойства данных). Нажмите . Откроется диалоговое окно Data Properties (Свойства данных).
- **4.** С помощью клавиши со стрелкой вниз выделите **Numeric Style** (Стиль чисел).
- **6.** Нажмите F1 (ОК).
- 7. Для Долготы повторите действия с 1 по 6.

Relative displacement graph

Latitude (*)
39.308655
Longitude (°)
-121.618271

Latitude (*)
N 39°18.519
Longitude (°)
W 121°37.096
Longitude — долгота Latitude — широта

стиль отображения местоположения по умолчанию (вверху) и отображение в градусах и минутах (внизу)

Изменение скорости выборки

По умолчанию GLX записывает данные с датчика положения 1 раз в секунду. Чтобы увеличить интервал выборки, выполните следующие действия:

- 1. Нажмите 🕥, 🕶 и откройте экран датчиков.
- **2.** С помощью клавиш со стрелками вправо-влево выберите «иконку» датчика положения GPS в верхней части экрана.
- 3. Чтобы выделить Sample Rate Unit (единица скорости выборки). Для скоростей выше 1 раза в 60 секунд, в качестве ЕИ оставьте секунды. Или нажмите ✓, открыв тем самым меню, с помощью клавиш со стрелками выделите минуты или часы. Нажмите √.
- **4.** С помощью клавиши со стрелкой вниз выделите **Sample Rate** (скорость выборки). Для задания интервала между выборками нажимайте (+) и (-) (диапазон интервалов выборки от 1 секунды до 4 часов).

Сбор данных в режиме «Ручная выборка»

В режиме «Ручная выборка» запись каждой точки данных инициируется нажатием клавиши. Данный режим полезен для выполнения серии точечных измерений вместо непрерывной регистрации данных.

- 1. Нажмите (1), 🗗 и откройте экран датчиков.
- 2. Нажмите F1 →, откройте меню Режим. С помощью клавиши со стрелкой вниз выделите Manual (Ручная выборка). Нажмите →. Откроется окно Data Properties (Свойства данных).
- **3.** Далее нажмите F2 *F2*. После этого шага GLX будет получать данные с датчика без подсказки о вводе данных.
- **4.** Откройте график, таблицу или выведите данные другим, удобным вам способом.
- 5. Чтобы начать запись отрезка данных нажмите .
- 6. Перейдите в то место, где вы собираетесь записывать точку данных.
- **7.** Нажмите (Р), чтобы записать одну точку данных с датчика положения (или с других подключенных датчиков).
- 8. Чтобы записать другие точки, повторяйте Шаги 6 и 7.
- 9. Выполнив запись всех точек, нажмите (), чтобы завершить запись отрезка данных.

Передача данных в DataStudio

Для передачи записанных данных в DataStudio и их последующего отображения и анализа на вашем компьютере выполните следующие действия.

- Завершив сбор данных, соедините GLX с USB-портом компьютера, на котором установлена программа DataStudio (для соединения используйте кабель, входящий в комплект поставки GLX). DataStudio запустится автоматически и откроет окно File Manager (Диспетчер файлов). Вы найдёте только что собранные вами данные в папке ОЗУ в файлах с наименованиями "untitled", untitled"(2), "untitled"(3) и т.д.
- **2.** Чтобы выбрать нужный файл, кликните его один раз. Кликните ОК, чтобы переслать этот файл в DataStudio. Файл откроется в этой программе.

Отображение данных в My World GIS (пример)

После сбора данных в GLX с помощью цифрового датчика положения (или других датчиков) вы можете импортировать их в программу *My World*, и данные будут отображены на карте или аэрофотоснимке, в комбинации с другими наборами данных. Для этой процедуры требуется флэш-накопитель USB или компьютер, на котором установлена программа *My World*.

В данном примере вы будете использовать зонд для измерения температуры для записи данных по температуре вместе с GPS-данными. Таким же способом вы можете записывать и выводить результаты измерений с других датчиков, например, влажности, pH, интенсивности света.

I. Получение данных

- 1. Подключите датчик положения в GLX.
- 2. Подключите температурный зонд к порту 1 или 2 с левой стороны GLX.
- 3. Включите GLX (если он уже не включен).
- 4. Вынесите GLX на улицу.
- **5.** Подождите, пока датчик не войдёт в режим «GLX активен» (должен мигать зелёный индикатор DATA).
- 6. Чтобы начать запись данных, нажмите .
- Пройдите (пешком) небольшое расстояние. Удерживайте датчик положения так, чтобы его сторона с этикеткой была направлена на небо. Пройдите по тем местам, где возможны перепады температур (из-за близости зданий, насаждений, водоёмов).
- 8. Чтобы закончить запись, нажмите 🗩.

II. Передача данных в My World

- 1. Подключите флэш-накопитель USB к порту USB с правой стороны GLX.
- 2. Чтобы вывести данные в виде таблицы, нажмите (1), (72).
- **3.** Чтобы открыть меню таблицы, нажмите F4 <u>F4</u>. С помощью клавиш со стрелками выделите **Export All Data** (экспортировать все данные). Нажмите (). Откроется диалоговое окно Export All Data (экспортировать все данные).
- **4.** Нажмите F4 *(*Add All Добавить всё).
- 5. Укажите наименование экспортируемого файла (при желании его можно отредактировать).
- 6. Нажмите F1 (OK). Текстовый файл с разделителями табуляцией, содержащий ваши данные, сохранится на флэш-накопителе USB. На GLX появится сообщение Data Export is Complete (Экспорт данных завершён).
- 7. Извлеките флэш-накопитель USB из GLX.
- 8. Подключите флэш-накопитель USB к вашему компьютеру.
- 9. Запустите My World.
- **10.** В программе *My World* откройте меню **Файл** и выберите **Import Layer from File** (Импортировать слой из файла). Перейдите к флэш-накопителю USB и откройте файл, сохранённый в Шаге 6.

флэш-накопитель USB

Появится окно Import Text Data (Импортировать текстовые данные).

- **11.** Измените настройку **Begin Importing on Line** (Начать импортировать в режиме онлайн). Установите 2.
- **12.** Кликните ОК. Появится окно *Save Imported Data As* (Сохранить импортированные данные как...).
- **13.** Напечатайте наименование файла *Temperature Walk.tsv.* Кликните Save (Сохранить). Новый набор данных, именуемый *Temperature Walk*, появится в Библиотеке данных в левой части экрана.

III. Отображение данных

- 1. «Перетащите» Temperature Walk из Библиотеки данных в Список слоёв.
- 2. Кликните вкладку Visualize (Визуализировать) Construct Visualize Analyze Edit
- 3. В Списке слоёв кликните *Temperature Walk* для выбора набора данных.
- 4. В Разделе «Карта» кликните кнопку Zoom, чтобы увеличить изображение.

На «Карте» появится изображение пройденного вами пути.

5. В Списке слоёв откройте меню **Color Field** (цветное поле, см. справа), выберите **Temperature** (Температура).

Нанесённые точки имеют теперь цветовые коды, обозначающие измерения температуры на каждой точке.

• Для изменения цветового кода и прочих свойств внешнего вида, кликните Edit Appearance (Редактировать внешний вид).

- Чтобы скомбинировать отображение данных с картой, аэрофотоснимком, другими наборами данных, вернитесь к вкладке Construct, перетащите нужный набор данных из Библиотеки данных в перечень данных.
- Более подробные инструкции по работе с программой *My World* приводятся по ссылке www.pasco.com/myworld/.

Применение датчика положения с другими интерфейсами

Xplorer (артикул PS-2000)

Подключите датчик положения к Xplorer – либо напрямую, либо с помощью входящего в комплект поставки кабеля. Проверьте состояние батарей в Xplorer. Нажмите и удерживайте кнопку «питание», чтобы включить Xplorer. Чтобы начать запись данных, нажмите . Для останова нажмите . повторно. Собрав как минимум один отрезок данных, подключите Xplorer к компьютеру, на котором работает программа DataStudio, чтобы вывести и проанализировать собранные данные.

Интерфейсы PASPORT на базе компьютеров

К таковым относятся: AirLink (PS-2005), PowerLink (PS-2001) и USB Link (PS-2100). Вы также можете использовать Xplorer и Xplorer GLX на базе компьютера.

Подключите интерфейс PASPORT к вашему компьютеру (инструкции прилагаются к интерфейсу). Соедините датчик положения с интерфейсом (либо подключите напрямую, либо с помощью входящего в комплект поставки кабеля). Запустите программу DataStudio. Чтобы начать запись данных, кликните Start (Пуск). Чтобы остановить запись данных, кликните Stop (Стоп).

k B	к к		
 temperature wal 	lk	\times	۲
Color: L		•	
Selections	#		
	Temperature (°C)		
	Speed (m/s)	2	
	Course (°)	ų	
	Altitude (m)		
	Satellite Count		

1

Спецификации

Точность определения положения	10 м, 2D RMS 5 м, 2D RMS с включенной широкозонной усиливающей системой
Точность определения скорости	0,1 м/с
Максимальная скорость выборки	1 Гц
Время первого определения местоположения (среднее)	42 с, «холодный» пуск 38 с, «тёплый» пуск 1 с, «горячий» пуск
Количество каналов	20

Техническая поддержка

Контактные данные Службы технической поддержки PASCO:

Адрес:	PASCO scientific, 10101 Бульвар Футхиллз,
	Розвилл, Калифорния 95747-7100
Телефон:	916-786-380 (для звонков из любой страны мира, кроме США) или 800-772-8700 (для звонков из США)
Факс:	(916) 786-7565
Сайт:	www.pasco.com
Электронная почта:	support@pasco.com

Ограниченная гарантия

Описание условий гарантии на продукцию PASCO приводится в каталоге PASCO.

Авторское право

Руководство для пользователя PASCO scientific 012-09919A GPS Position Sensor Instruction Manual (Цифровой датчик положения GPS) защищено авторским правом. Копирование любой части настоящего руководства разрешается некоммерческим образовательным учреждениям при условии использования исключительно в лабораториях и аудиториях и неосуществлении продаж с целью получения прибыли. При других обстоятельствах копирование без письменного разрешения со стороны PASCO scientific запрещается.

Торговые марки

PASCO, PASCO scientific, DataStudio, PASPORT, Xplorer и Xplorer GLX являются торговыми марками или зарегистрированными торговыми марками PASCO scientific в США и/или других странах. Наименования других брендов, продуктов и сервисов являются или могут быть торговыми или сервисными марками, используемыми для идентификации продукции и услуг других владельцев. Для получения более подробной информации заходите по ссылке www.pasco.com/legal.

Му World GIS является торговой маркой Северо-Западного Университета США.